extension | φ:Q→Aut N | d | ρ | Label | ID |
C32⋊(C4×Dic3) = He3⋊C42 | φ: C4×Dic3/C22 → D6 ⊆ Aut C32 | 144 | | C3^2:(C4xDic3) | 432,94 |
C32⋊2(C4×Dic3) = C4×C32⋊C12 | φ: C4×Dic3/C2×C4 → S3 ⊆ Aut C32 | 144 | | C3^2:2(C4xDic3) | 432,138 |
C32⋊3(C4×Dic3) = C4×He3⋊3C4 | φ: C4×Dic3/C2×C4 → S3 ⊆ Aut C32 | 144 | | C3^2:3(C4xDic3) | 432,186 |
C32⋊4(C4×Dic3) = Dic3×C32⋊C4 | φ: C4×Dic3/Dic3 → C4 ⊆ Aut C32 | 48 | 8- | C3^2:4(C4xDic3) | 432,567 |
C32⋊5(C4×Dic3) = C4×C33⋊C4 | φ: C4×Dic3/C12 → C4 ⊆ Aut C32 | 48 | 4 | C3^2:5(C4xDic3) | 432,637 |
C32⋊6(C4×Dic3) = Dic3×C3⋊Dic3 | φ: C4×Dic3/C2×C6 → C22 ⊆ Aut C32 | 144 | | C3^2:6(C4xDic3) | 432,448 |
C32⋊7(C4×Dic3) = C33⋊6C42 | φ: C4×Dic3/C2×C6 → C22 ⊆ Aut C32 | 48 | | C3^2:7(C4xDic3) | 432,460 |
C32⋊8(C4×Dic3) = C3×Dic32 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C32 | 48 | | C3^2:8(C4xDic3) | 432,425 |
C32⋊9(C4×Dic3) = C12×C3⋊Dic3 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C32 | 144 | | C3^2:9(C4xDic3) | 432,487 |
C32⋊10(C4×Dic3) = C4×C33⋊5C4 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C32 | 432 | | C3^2:10(C4xDic3) | 432,503 |