Extensions 1→N→G→Q→1 with N=C32 and Q=C4×Dic3

Direct product G=N×Q with N=C32 and Q=C4×Dic3
dρLabelID
Dic3×C3×C12144Dic3xC3xC12432,471

Semidirect products G=N:Q with N=C32 and Q=C4×Dic3
extensionφ:Q→Aut NdρLabelID
C32⋊(C4×Dic3) = He3⋊C42φ: C4×Dic3/C22D6 ⊆ Aut C32144C3^2:(C4xDic3)432,94
C322(C4×Dic3) = C4×C32⋊C12φ: C4×Dic3/C2×C4S3 ⊆ Aut C32144C3^2:2(C4xDic3)432,138
C323(C4×Dic3) = C4×He33C4φ: C4×Dic3/C2×C4S3 ⊆ Aut C32144C3^2:3(C4xDic3)432,186
C324(C4×Dic3) = Dic3×C32⋊C4φ: C4×Dic3/Dic3C4 ⊆ Aut C32488-C3^2:4(C4xDic3)432,567
C325(C4×Dic3) = C4×C33⋊C4φ: C4×Dic3/C12C4 ⊆ Aut C32484C3^2:5(C4xDic3)432,637
C326(C4×Dic3) = Dic3×C3⋊Dic3φ: C4×Dic3/C2×C6C22 ⊆ Aut C32144C3^2:6(C4xDic3)432,448
C327(C4×Dic3) = C336C42φ: C4×Dic3/C2×C6C22 ⊆ Aut C3248C3^2:7(C4xDic3)432,460
C328(C4×Dic3) = C3×Dic32φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C3248C3^2:8(C4xDic3)432,425
C329(C4×Dic3) = C12×C3⋊Dic3φ: C4×Dic3/C2×C12C2 ⊆ Aut C32144C3^2:9(C4xDic3)432,487
C3210(C4×Dic3) = C4×C335C4φ: C4×Dic3/C2×C12C2 ⊆ Aut C32432C3^2:10(C4xDic3)432,503

Non-split extensions G=N.Q with N=C32 and Q=C4×Dic3
extensionφ:Q→Aut NdρLabelID
C32.(C4×Dic3) = C4×C9⋊C12φ: C4×Dic3/C2×C4S3 ⊆ Aut C32144C3^2.(C4xDic3)432,144
C32.2(C4×Dic3) = Dic3×Dic9φ: C4×Dic3/C2×C6C22 ⊆ Aut C32144C3^2.2(C4xDic3)432,87
C32.3(C4×Dic3) = C12×Dic9φ: C4×Dic3/C2×C12C2 ⊆ Aut C32144C3^2.3(C4xDic3)432,128
C32.4(C4×Dic3) = C4×C9⋊Dic3φ: C4×Dic3/C2×C12C2 ⊆ Aut C32432C3^2.4(C4xDic3)432,180

׿
×
𝔽